Biodistribution and in Vivo Activities of Tumor-Associated Macrophage-Targeting Nanoparticles Incorporated with Doxorubicin

نویسندگان

  • Mengmeng Niu
  • Youssef W. Naguib
  • Abdulaziz M. Aldayel
  • Yan-chun Shi
  • Stephen D. Hursting
  • Matthew A. Hersh
  • Zhengrong Cui
چکیده

Tumor-associated macrophages (TAMs) are increasingly considered a viable target for tumor imaging and therapy. Previously, we reported that innovative surface-functionalization of nanoparticles may help target them to TAMs. In this report, using poly(lactic-co-glycolic) acid (PLGA) nanoparticles incorporated with doxorubicin (DOX) (DOX-NPs), we studied the effect of surface-modification of the nanoparticles with mannose and/or acid-sensitive sheddable polyethylene glycol (PEG) on the biodistribution of DOX and the uptake of DOX by TAMs in tumor-bearing mice. We demonstrated that surface-modification of the DOX-NPs with both mannose and acid-sensitive sheddable PEG significantly increased the accumulation of DOX in tumors, enhanced the uptake of the DOX by TAMs, but decreased the distribution of DOX in mononuclear phagocyte system (MPS), such as liver. We also confirmed that the acid-sensitive sheddable PEGylated, mannose-modified DOX-nanoparticles (DOX-AS-M-NPs) targeted TAMs because depletion of TAMs in tumor-bearing mice significantly decreased the accumulation of DOX in tumor tissues. Furthermore, in a B16-F10 tumor-bearing mouse model, we showed that the DOX-AS-M-NPs were significantly more effective than free DOX in controlling tumor growth but had only minimum effect on the macrophage population in mouse liver and spleen. The AS-M-NPs are promising in targeting cytotoxic or macrophage-modulating agents into tumors to improve tumor therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development and evaluation of macrophage targeted multidrug therapy against visceral leishmaniasis

In this study, we fabricated PCL-nanoparticles by encapsulating dual drugs as amphotericin B and doxorubicin via double-emulsion solvent evaporation method also incorporated with ligand-lectin for targeting the infested macrophage cells and prove importance against VL. Different independent processing parameters were assessed systematically to enhance the incorporation of the dual agents with d...

متن کامل

PLGA-based macrophage-mediated drug targeting for the treatment of visceral leishmaniasis

The potential of PLGA-nanoparticles as a carrier of amphotericin B and doxorubicin against visceral leishmaniasis was evaluated by macrophage-mediated drug targeting approach. PLGA-nanoparticles were modified by coating them with macrophage-specific ligand-lectin. Prior to in-vitro studies, characterization studies were carried out systematically include particle size, surface morphology, perce...

متن کامل

Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy

Human homeobox protein (Nanog) is highly expressed in most cancer cells and has gradually emerged as an excellent target in cancer therapy, owing to its regulation of cancer cell proliferation, metastasis and apoptosis. In this study, we prepared tumor-targeting functionalized selenium nanoparticles (RGDfC-SeNPs) to load chemotherapeutic doxorubicin (DOX) and Nanog siRNA. Herein, RGDfC peptide ...

متن کامل

Nanolipoparticles-mediated MDR1 siRNA delivery reduces doxorubicin resistance in breast cancer cells and silences MDR1 expression in xenograft model of human breast cancer

Objective(s): P-glycoprotein (P-gp) is an efflux protein, the overexpression of which has been associated with multidrug resistance in various cancers. Although siRNA delivery to reverse P-gp expression may be promising for sensitizing of tumor cells to cytotoxic drugs, the therapeutic use of siRNA requires effective carriers that can deliver siRNA intracellularly with minimal toxicity on targe...

متن کامل

Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging.

Targeted delivery represents a promising approach for the development of safer and more effective therapeutics for oncology applications. Although macromolecules accumulate nonspecifically in tumors through the enhanced permeability and retention (EPR) effect, previous studies using nanoparticles to deliver chemotherapeutics or siRNA demonstrated that attachment of cell-specific targeting ligan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2014